Poster n°8

SOLID LIPID NANOPARTICLES AS NEW STRATEGY FOR ORAL DELIVERY OF **NEBIVOLOL HYDROCHLORIDE**

Alice Beni, <u>Alessandro Mancini</u>, Serena Orlandini, Natascia Mennini, Marzia Cirri, Ilaria Chiarugi, Camilla Vannucchi, Silvia Fiani, Francesca Maestrelli

University of Florence, Department of Chemistry "Ugo Schiff" (DICUS), via Ugo Schiff 6, Sesto Fiorentino, Italy

INTRODUCTION

Nebivolol Hydrochloride (Neb), a third-generation β -blocker, is commonly used in the treatment of hypertension, but suffers from low oral bioavailability due to its poor aqueous solubility. Solid lipid nanoparticles (SLNs) have emerged as a promising strategy to enhance drug solubility and control the release rate, offering several advantages over other nanocarriers, including increased drug loading of lipophilic drugs and safety.

range from 50 nm to 1000 nm

by surfactants

ľ `O] [∫H a

OPERATING PROCEUDRE

1. Design of Experiments (DoE)

Matrix: asymmetric screening design <u>Software:</u> Nemrow-W (LPRAI sarl, Marsiglia, Francia) Optimization of the SLNs formulation was achieved screening eight different factors involved in the formulation process:

- Weight of Pluronic[®] F68 (Plur),
- Weight of Compritol[®] 888 ATO (Comp),
- Weight of Octadecylamine (Oct),
- Ultra-Turrax (UT) speed (rpm),
- Homogenization time,
- Amplitude (Amp) of the sonicator, 6.
- Sonicator pulse mode (Pul),
- Sonication time. Optimized formulation: 8.

1	2	3	4	5	6	7	8	Neb
100	120	10	20k	5	80	6	5	5.48
mg	mg	mg	rpm	min	%	S	min	mg

5. Entrapment Efficiency (EE%) Loading Capacity (LC%)

 \rightarrow Indirect method

2. Neb quantification \rightarrow HPLC

Instrument: Shimadzu SPD-6A apparatus equipped with an injector valve with a 20 mL sample loop.

Flow rate: 1.0 mL/min (LC-10AS Shimadzu pump).

<u>λ:</u> 280 nm.

Column: C18 Zorbax CN (5 µm 4.6x150 mm).

Retention time: 4 minutes.

6. MTT Test

 \rightarrow MTT test was used to determine the toxicity of the formulation on AGS cells

The formulation was incubated with AGS cells for 6 and 18 hours at different concentrations. In no case significant toxicity values were observed.

3. SLNs Preparation

Solvent-free and

green technique

Lipid and aqueous phase

(Ultra turrax - IKA® T25 digital)

 \rightarrow Hot High Shear Homogenization method

Homogenization

Ultrasonic processor

4. Stability studies

The optimized SLNs exhibited:

- particle size (Z-Av) of (292.8 ± 89.7) nm,
- a Polydispersity Index (PDI) of 0.266 ± 0.075 ,
- a Zeta Potential (ZP) of (61.7 ± 1.9) mV.

7. Scanning Electron Microscopy (SEM)

 \rightarrow Samples were stained with 1% (w/v) phosphotungstic acid for 30 s and placed on copper grids for viewing

smooth, spherical morphology well dispersed and separated average diameter: 300 nm

8. Drug Release Assay

 \rightarrow Dialysis bag method at 37°C

From the comparison of the 2 curves in the graph above, it is possible to claim that the formulation allow a more controlled and prolonged drug release with respect to the drug powder.

CONCLUSION

- The application of DoE proved useful for optimizing the formulation.
- Sustained release of the drug from SLN was achieved.
- The stability over time changed significantly with temperature variations, suggesting that this is a critical parameter.
- Oral nanosuspensions of Neb are a promising way to increase the absorption

REFERENCES

¹ Monton S.S. et al., "Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects", Front. Mol. Biosci. 2020, 7.

² Kathe N. et al., "Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations", Drug. Dev. Ind. Pharm. 2014, 1-11.

³ Seleme V.B et al., "Nebivolol for the Treatment of Essential Systemic Arterial. Hypertension: A Systematic Review and Meta-Analysis", Am. J. Cardiovasc. Drugs 2020.

